<u>curriculum</u> design

teaching science

S rstd.ío/teach-ds-jsm19

Let them eat cake (first)!

@mínebocek

níne-cetínkaya-rundel

Cetínkaya.míne@gmail.com

© Tom Hovey 2018

rstd.ío/teach-ds-jsm19 🗞

Which of the following gives you a better sense of the final

Pineapple and Coconut Sandwich Cake

S rstd.io/teach-ds-jsm19

Pineapple and Coconut Sandwich Cake

S rstd.io/teach-ds-jsm19

Pineapple and Coconut Sandwich Cake

% rstd.io/teach-ds-jsm19

Backward design

set goals for educational curriculum before choosing instructional methods + forms ofassessment 6

analogous to travel planning itinerary deliberately designed to meet cultural goals, not purposeless tour of all major sites in a foreign country

Wiggins, Grant P., Grant Wiggins, and Jay McTighe. Understanding by design. Ascd, 2005.

(1) Identify desired results

> (2) Determine acceptable evidence

Designing backwards

students are first exposed to results and findings of a data analysis and then learn the building blocks of the methods and techniques used along the way

••

and instruction

GAISE 2016

1. Teach statistical thinking.

- a. Teach statistics as an investigative process of problem-solving and decision-making. Students should not leave their introductory statistics course with the mistaken impression that statistics consists of an unrelated collection of formulas and methods. Rather, students should understand that statistics is a problem-solving and decisionmaking process that is fundamental to scientific inquiry and essential for making sound decisions.
- b. Give students experience with multivariable thinking. We live in a complex world in which the answer to a question often depends on many factors. Students will encounter such situations within their own fields of study and everyday lives. We must prepare our students to answer challenging questions that require them to investigate and explore relationships among many variables. Doing so will help them to appreciate the value of statistical thinking and methods.
- 2. Focus on conceptual understanding.
- Integrate real data with a context and a purpose.
- Foster active learning.
- Use technology to explore concepts and analyze data.
- Use assessments to improve and evaluate student learning. 6.

GAISE 2016, http://www.amstat.org/asa/files/pdfs/GAISE/GaiseCollege_Full.pdf.

(1) NOT a commonly used subset of tests and intervals and produce them with hand calculations

(2) Multivariate analysis requires the use of computing

3) NOT use technology that is only applicable in the intro course or that doesn't follow good science principles

(4) Data analysis isn't just inference and modeling, it's also data importing, cleaning, preparation, exploration, and visualization

visualization

Which of the following is more likely to be **motivating** for a wide range of students?

S rstd.ío/teach-ds-jsm19

with great examples, comes a great amount of code...

but let's focus on the task at hand...

Open today's demo project
 Knit the document and discuss the results with your neighbor
 Then, change Turkey to a different country, and plot again

un votes %>%

filter(country %in% c("United States of America", "Turkey")) %>% inner_join(un_roll_calls, by = "rcid") %>% inner_join(un_roll_call_issues, by = "rcid") %>% group_by(country, year = year(date), issue) %>% summarize(

votes = n(),

percent yes = mean(vote = "yes")

) %>%

ggplot(mapping = aes(x = year, y = percent_yes, color = country)) + geom point() +

geom_smooth(method = "loess", se = FALSE) + facet_wrap(~ issue) +

labs(

title = "Percentage of 'Yes' votes in the UN General Assembly", subtitle = "1946 to 2015", y = "% Yes", x = "Year",

color = "Country"

S rstd.ío/teach-ds-jsm19

filter(votes > 5) %>% # only use records where there are more than 5 votes

un votes %>%

filter(country %in% c("United States of America", "Turkey")) %>% inner_join(un_roll_calls, by = "rcid") %>% inner_join(un_roll_call_issues, by = "rcid") %>% group_by(country, year = year(date), issue) %>% summarize(

votes = n(),

percent_yes = mean(vote = "yes")

) %>%

ggplot(mapping = aes(x = year, y = percent_yes, color = country)) + geom point() +

geom_smooth(method = "loess", se = FALSE) + facet_wrap(~ issue) +

labs(

title = "Percentage of 'Yes' votes in the UN General Assembly", subtitle = "1946 to 2015", y = "% Yes",

x = "Year",

color = "Country"

S rstd.ío/teach-ds-jsm19

filter(votes > 5) %>% # only use records where there are more than 5 votes

un votes %>%

filter(country %in% c("United States of America", "Canada")) %>% inner_join(un_roll_calls, by = "rcid") %>% inner_join(un_roll_call_issues, by = "rcid") %>% group_by(country, year = year(date), issue) %>% summarize(

votes = n(),

percent_yes = mean(vote = "yes")

) %>%

ggplot(mapping = aes(x = year, y = percent_yes, color = country)) + geom point() +

geom_smooth(method = "loess", se = FALSE) + facet_wrap(~ issue) +

labs(

title = "Percentage of 'Yes' votes in the UN General Assembly", subtitle = "1946 to 2015", y = "% Yes",

x = "Year",

color = "Country"

S rstd.ío/teach-ds-jsm19

filter(votes > 5) %>% # only use records where there are more than 5 votes

Percentage of 'Yes' votes in the UN General Assembly 1946 to 2015

% rstd.ío/teach-ds-jsm19

2000

2000

more likely for students to have intuition coming in easier for students to catch their own mistakes

00

% rstd.ío/teach-ds-jsm19

23

accidental aRt

@accidental_aRt

When data visualization goes beautifully wrong. Brought to you by @ErikaMudrak & @kara_woo.

- S accidental-aRt.tumblr.com
- Joined October 2013

Tweet to accidental aRt

Judy Schmidt @SpaceGeck

sometimes if you put a negative where it shouldn't be you accidentally open a portal to unknown space

♡ 63 7:34 PM - Dec 27, 2018

Srstd.ío/teach-ds-jsm19

My niece just found the color markers.

tmblr.co/Z7M53q2eUJdrx

(

♡ 5 12:40 PM - Dec 7, 2018

more likely for students to have intuition coming in easier for students to catch their own mistakes

 $\mathbf{O}\mathbf{O}$

% rstd.ío/teach-ds-jsm19

who doesn't like a good piece of cake visualization?

25

ex: Introduction to R for Data Science

Microsoft Professional	Program	Certificate	in
Data Science			

Course Syllabus

Section 1: Introduction to Basics Take your first steps with R. Discover the basic data types in R and assign your first variable.

Section 2: Vectors

Analyze gambling behaviour using vectors. Create, name and select elements from vectors.

Learn how to work with matrices in R. Do basic computations with them and demonstrate your knowledge by analyzing the Star Wars box office figures.

Section 4: Factors

R stores categorical data in factors. Learn how to create, subset and compare categorical data.

Section 5: Data Frames

When working R, you'll probably deal with Data Frames all the time. Therefore, you need to know how to create one, select the most interesting parts of it, and order them.

Section 6: Lists

Lists allow you to store components of different types. Section 6 will show you how to deal with lists.

Section 3: Matrices

Section 7: Basic Graphics

Discover R's packages to do graphics and create your own data visualizations.

ex: Data Science Specialization

Johns Hopkins University

JOHNS I IOPKINS	Data Science Specialization	Enroll Starts Sep 27
About How It Works	<u>Courses</u> Instructors Enrollment Options FAQ	
4	The Data Scientist's Teelbox	
	The Data Scientist's Toolbox	
COURSE	\star \star \star \star \star 4.5 16,022 ratings \cdot 3,325 reviews	
	In this course you will get an introduction to the main tools and ideas in the data scientist's toolbox. The course gives data, questions, and tools that data analysts and data scientists work with. There are two components to this course.	an overview of the The first is a c MO!
2	R Programming	
COURSE	★ ★ ★ ★ 4.6 12,076 ratings • 2,558 reviews	
	In this course you will learn how to program in R and how to use R for effective data analysis. You will learn how to in software necessary for a statistical programming environment and describe generic programming language concepts	stall and configure ; as they are i MOR
3	Getting and Cleaning Data	
COURSE	\star \star \star \star \star 4.6 5,178 ratings \cdot 829 reviews	
	Before you can work with data you have to get some. This course will cover the basic ways that data can be obtained. obtaining data from the web, from APIs, from databases and from colleagues in various formats. It will also cover the MORE	The course will cove basics of data
A	Exploratory Data Analysis	
COURSE	\star \star \star \star \star 4.7 3,957 ratings \cdot 591 reviews	
	This course covers the essential exploratory techniques for summarizing data. These techniques are typically applied modeling commences and can help inform the development of more complex statistical models. Exploratory techniq for eliminating or sharpening potential hypotheses about the world that can be addressed by the data. We will cover systems in R as well as some of the basic principles of constructing data graphics. We will also cover some of the com statistical techniques used to visualize high-dimensional data. LESS	before formal ues are also importa in detail the plotting mon multivariate
o/teach-ds	-jsm19 coursera.org	/specializa

coursera.org/specializations/jhu-data-science#courses

ex: Intro to Data Science

Duke University, soon University of Edinburgh

Fundamentals of data & data viz, confounding variables, Simpson's paradox R / RStudio, R Markdown, simple git

Tidy data, data frames vs. summary tables, recoding and transforming, web scraping and iteration collaboration on GitHub

Building & selecting models, visualizing interactions, prediction & validation, inference via simulation

Data science ethics, interactive viz & reporting, text analysis, Bayesian inference communication, dissemination

stat.duke.edu/courses/Spring18/Sta199

> Your turn!

Go to <u>nytimes.com/2019/01/03/</u> learning/whats-going-on-in-thisgraph-jan-9-2019.html and answer what might be going on in this graph? Write a catchy headline that captures the graph's main idea. If your headline makes a claim, tell us what you noticed that supports your claim.

Which of the following is more likely to **inspire** students to want to learn more?

Create a visualization displaying whether the vote was on an amendment.

S rstd.ío/teach-ds-jsm19

Create a visualization displaying how US and Turkey voted over the years on issues of arms control and disarmament, colonialism, economic development, human rights, nuclear weapons, and

Percentage of 'Yes' votes in the UN General Assembly

ggplot(data = un_roll_calls, mapping = aes(x = amend)) + geom_bar()


```
ggplot(data = un_votes_joined,
  geom_point() +
  geom_smooth(method = "loess", se = FALSE) +
  facet_wrap(~ issue) +
  labs(
    subtitle = "1946 to 2015",
    v = "% Yes",
                                   1946 to 2015
    x = "Year",
    color = "Country"
                                 0.8 -
                                 0.4 -
                                 0.0
                                % Yes
                                 0.8 -
                                 0.4 -
                                 0.0 -
```

S rstd.ío/teach-ds-jsm19

mapping = aes(x = year, y = percent_yes, color = country)) +

title = "Percentage of 'Yes' votes in the UN General Assembly",

Percentage of 'Yes' votes in the UN General Assembly

34

non-trivial examples can be motivating, but need to avoid 1!

1. Draw some circles

2. Draw the rest of the fucking owl

35

How to draw an owl

\rightarrow introduce + scaffold + layer \rightarrow

36
ggplot(data = un_votes_joined)

ggplot(data = un_votes_joined, mapping = aes(x = year, y = percent_yes))

0.00 -

38

ggplot(data = un_votes_joined, mapping = aes(x = year, y = percent_yes))

often a verb

function(arguments)

what to apply that verb to

39

ggplot(data = un_votes_joined, mapping = aes(x = year, y = percent_yes))

- 💷 L	un_votes_joined ×										
) 11 7	Filter			٩	,					
^	country 🌐	year 🍦	issue 🌣	votes	÷	percent_yes 🔅					
1	Turkey	1946	Colonialism	15		0.8000000					
2	Turkey	1946	Economic development	7		0.57142857					
3	Turkey	1947	Colonialism	9		0.22222222					
4	Turkey	1947	Palestinian conflict	6		0.00000000					
5	Turkey	1948	Arms control and disarmament	8		0.00000000					
6	Turkey	1948	Colonialism	13		0.46153846					
7	7 Turkey 1948		Human rights	11		0.18181818					
8	8 Turkey 1948		Nuclear weapons and nuclear material	7		0.00000000					
9	Turkey	1948	Palestinian conflict	11		0.27272727					
10	Turkey	1949	Colonialism			0.54285714					
11	Turkey	1949	Economic development			0.09090909					
12	Turkey	1949	Palestinian conflict	17		0.23529412					
13	Turkey	1950	Colonialism	14		0.64285714					
14	Turkey	1952	Colonialism	12		0.08333333					
15	Turkey	1952	Human rights	11		0.36363636					
16	Turkey	1953	Colonialism	9		0.00000000					
17	Turkey	1953	Human rights	7		0.28571429					
18	Turkey	1954	Colonialism	8		0.12500000					
Show	ing 1 to 19 of	621 entrie	es								

rows =observations

"tídy" data frame

columns = variables

40

ggplot(data = un_votes_joined, mapping = aes(x = year, y = percent_yes)) + geom_point()

year

ggplot(data = un_votes_joined, mapping = aes(x = year, y = percent_yes, color = country)) + geom_point()

ggplot(data = un_votes_joined, geom_point() + geom_smooth(method = "loess", se = FALSE)

mapping = aes(x = year, y = percent_yes, color = country)) +

ggplot(data = un_votes_joined, geom_point() + geom_smooth(method = "loess", se = FALSE) + facet_wrap(~ issue)

mapping = aes(x = year, y = percent_yes, color = country)) +

Srstd.ío/teach-ds-jsm19

1960

0.0 -

y = percent_yes, color = country)) +

se = FALSE) +

votes in the UN General Assembly",

e of 'Yes' votes in the UN General Assembly

Which of the following is more likely to be **welcoming** for a wide range of students?

□ Install R Install RStudio Install the following packages: tidyverse rmarkdown Ω... Load these packages Install git

Go to <u>rstudio.cloud</u> (or some other server based solution) Log in with your ID & pass

> hello R!

method of delivery, and medium of interaction matters

49

P	ų	2	1	
A	n	a	y	5

References Appendix

UN Votes

Mine Cetinkaya-Rundel

2018-09-28

Let's take a look at the voting history of countries in the United Nations General Assembly. We will be using data from the unvotes package. Additionally, we will make use of the tidyverse and lubridate packages for the analysis, and the DT package for interactive display of tabular output.

Data

The unvotes package provides three datasets we can work with: un_roll_calls, un_roll_call_issues, and un_votes. Each of these datasets contains a variable called road, the roll call id, which can be used as a unique identifier to join them with each other.

. The un_votes dataset provides information on the voting history of the United Nations General Assembly. It contains one row for each country-vote pair.

un,	votes	•			
"	e		le: 738,764 x 4		
**		reid	country	country_code	vote
**	<	int>	sehr>	<ehr></ehr>	<fet></fet>
**	1	3	United States of America	05	yes
**	2	3	Canada	CA	60
**	3	3	Cuba	cu	yes
**	4	3	Haiti	87	yes
**	5	3	Dominican Republic	00	yes
**	6	3	Mexico	MX	yes
**	7	3	Guatemala	OT	yes
**		3	Bonduras	HN .	yes
**	9	3	El Salvador	sv	yes
**	10	3	Nicaragua	87	yes
**	+	wit:	th 738,754 more rows		

. The us_coll_calls dataset contains information on each roll call vote of the United Nations General Assembly.

un_roll_calls

**			le: 5,425	× 9						
**		reid	session	importantvote	date	unres	amend	para	short	descr
**		<int></int>	<@1>	<@12	<date></date>	<ehr></ehr>	<@1>	<@1>	<0hi5	<045>
**	1	3	1	0	1946-01-01	8/1/66	1	0	ANEN_	70 ADO
**	2	4	1	0	1946-01-02	8/1/79	¢	0	SECU_	70 ADO.
**	3	5	1	0	1946-01-04	8/1/98	0	0	VOTI_	"TO AD.,

•	46	٩	
A	na	iy	sis

References Appendix

UN Votes

Mine Cetinkaya-Rundel

2018-09-28

Let's take a look at the voting history of countries in the United Nations General Assembly. We will be using data from the unvotes package. Additionally, we will make use of the tidyverse and lubridate packages for the analysis, and the DT package for interactive display of tabular output.

Data

The unvotes package provides three datasets we can work with: un_roll_calls, un_roll_call_issues, and un_votes. Each of these datasets contains a variable called road, the roll call id, which can be used as a unique identifier to join them with each other.

. The un_votes dataset provides information on the voting history of the United Nations General Assembly. It contains one row for each country-vote pair.

un,	in_votes								
"	# A 1	1.060	le: 738,764 x 4						
**		rcid	country	country_code	vote				
**	<	int>	sehr>	<ehr></ehr>	«fet»				
**	1	3	United States of America	05	yes				
**	2	3	Canada	CA	no				
**	3	3	Cuba	cu	yes				
**	4	3	Haiti	87	yes				
**	5	3	Dominican Republic	00	3.68				
**	6	3	Mexico	HK	yes				
**	7	3	Guatemala	GT	yes				
**		3	Bonduras	HN .	yes				
**	9	3	El Salvador	SV	yes				
**	10	3	Nicaragua	87	yes				
**	e	wit:	th 738,754 more rows						

. The us_coll_calls dataset contains information on each roll call vote of the United Nations General Assembly.

un_roll_calls

**	## # A tibble: 5,429 x 9									
**		reid	session	importantvote	date	unres	anend	para	short	descr
**		<int></int>	<@1>	<@11>	<date></date>	<ehr></ehr>	<曲1>	<@1>	<spin></spin>	<(0)5>
**	1	3	1	0	1946-01-01	8/1/66	1	0	AKEN	70 ADO
**	2	4	2	0	1946-01-02	8/1/79	0	0	SECU_	70 ADO
**	3	5	1	0	1946-01-04	8/1/98	0	. 0	VOTI_	"TO AD_

> Your turn!

- Go to rstd.io/teach-ds-cloud to join the RStudio Cloud workspace for this workshop.
- Start the assignment called 01 - UN Votes.
- Open the R Markdown document called unvotes.Rmd, knit the document, view the result.
- Then, change "Turkey" to another country, and knit again.

× +
× +
loud x +
dio Cloud × +
/cloud/project/unvotes.html
udent-mine.rstudio.cloud/4a59a4a16da54328be352bde93e5df46/?view=rmarkdown
Open in Browser Q Find

_	_	_	
0	e	S	

UN Votes

Mine Çetinkaya-Rundel 2019-07-28

Analysis

Let's take a look at the voting history of countries in the United Nations General Assembly. We will be using data from the unvotes package. Additionally, we will make use of the tidyverse and lubridate packages for the analysis, and the DT package for interactive display of tabular cutput.

```
library(tidyverse)
library(unvotes)
library(lubridate)
library(DT)
```

The unvotes package provides three datasets we can work with: un_roll_calls, un_roll_call_issues, and un_votes. Each of these datasets contains a variable called roid, the roll call id, which can be used as a unique identifier to join them with each other.

- The un votes dataset provides information on the voting history of the United Nations General Assembly. It contains one row for each country-vote pair.
- The un roll calls dataset contains information on each roll call vote of the United Nations General Assembly.
- The un_rol1_call_issues dataset contains (topic) classifications of roll call votes of the United Nations General Assembly. Many votes had no topic, and some have more than one.

Let's create a visualization that we create a visualization that displays how the voting record of the United States changed over time on a variety of issues, and compares it to another country. The other country we'll display is Turkey.

```
un_votes %>%
 filter(country %in% c("United States of America", "Turkey")) %>%
 inner_join(un_roll_calls, by = "rcid") %>%
 inner_join(un_roll_call_issues, by = "rcid") %>%
 mutate(issue = ifelse(issue == "Nuclear weapons and nuclear material",
                        "Nuclear weapons and materials", issue)) %>%
 group bu(country year = year(date) iceue) $28
```


Veggjes

Srstd.io/teach-ds-jsm19

data acquisition

S rstd.ío/teach-ds-jsm19

Which of the following is more likely to be **interesting** for a wide range of students?

D Topic: Web scraping **D** Tools:

- □ rvest
- regular expressions

Today we start with this: and end with this:

North Carolina District 01 2018 Race

rmmary Candidates	Contributors	Industries	Sectors	PAGs	Geography	Outsid
arch for a Candida	ite					
andidate Name	۹	Sum	mary	Data	1	
ect a State		Select o	cycle: 20)18	-	
abama	-					
DISTRICTS		Tota	l Raised	and S	pent	
North Carolina Distric	t 01 x					-
North Carolina Distric	:t 02 •	Candida	C.B.			Kalse
North Carolina Distric	t 03 (G K Bu	tterfield (D)	 Incomt 	bent	\$714,21
North Carolina Distric	:t 04 »	Roger /	Alison (R)			\$28,31
North Carolina Distric	t 05 1					
North Carolina Distric	:t 06)	See all	candida	ites in	this race	
North Carolina Distric	:1 07 >	NOTE: based (All the nu on Feder	imbers al Elect	on this pag ion Commis	je are fi islon da
North Carolina Distric	t 08)	2018. (("Help! T	he nur	nbers don'	t add u
North Carolina Distric	t 09 »	Feel fro Politics	e to dist	ribute (or cite this r	naterial for com
North Carolina Distric	t 10 x	Center	info@ci	p.org	r so reprint	

and do so in a way that is easy to replicate for another state

% rstd.ío/teach-ds-jsm19

for the 2017-2018 House election cycle and lata available electronically on October 29, up...")

l, but please credit the Center for Responsive mercial uses, such as textbooks, contact the

as of 9/30/2018

Source: OpenSecrets.org

students will en challenges a let tha and then pro

students will encounter lots of new challenges along the way —

let that happen,

and then provide a solution

57

 Lesson: Web scraping essentials
 for turning a structured table into a data frame in R.

58

 Lesson: Web scraping essentials
 for turning a structured table into a data frame in R.

Ex1: Scrape the table off the web and save as a data frame.

Candidate	0 Raised	0 Spent	ံ Cash on Hand	0 Last Report	0
G K Butterfield (D) • Incumbent	\$714,219	\$797,700	\$560,416	10/17/2018	
Roger Allison (R)	\$28,314	\$27,817	\$497	10/17/2018	

^	candidate_info \diamond	raised 🌼	spent 🍦	cash_on_hand $$	last_report	race 🌣
1	G K Butterfield (D) • Incumbent	714219	797700	560416	2018-10-17	North Carolina District 01
2	Roger Allison (R)	28314	27817	497	2018-10-17	North Carolina District 01

S rstd.ío/teach-ds-jsm19

59

Lesson: Web scraping essentials for turning a structured table into a data frame in R.

Ex 1: Scrape the table off the web and save as a data frame.

Candidate	0 Raised	0 Spent	ံ Cash on Hand	0 Last Report	0
G K Butterfield (D) • Incumbent	\$714,219	\$797,700	\$560,416	10/17/2018	
Roger Allison (R)	\$28,314	\$27,817	\$497	10/17/2018	

^	candidate_info \diamond	raised 🌼	spent 🔅	cash_on_hand 🌼	last_report 🔅	race \diamond
1	G K Butterfield (D) • Incumbent	714219	797700	560416	2018-10-17	North Carolina District 01
2	Roger Allison (R)	28314	27817	497	2018-10-17	North Carolina District 01

Srstd.ío/teach-ds-jsm19

Ex 2: What other information do we need represented as variables in the data to obtain the desired facets?

Political contributions for 2018 NC Congressional Races as of 9/30/2018

Source: OpenSecrets.org

Lesson: Web scraping essentials for turning a structured table into a data frame in R.

Ex 1: Scrape the table off the web and save as a data frame.

Candidate	0 Raised	0 Spent	ර Cash on Hand	0 Last Report	¢
G K Butterfield (D) • Incumbent	\$714,219	\$797,700	\$560,416	10/17/2018	
Roger Allison (R)	\$28,314	\$27,817	\$497	10/17/2018	

^	candidate_info ‡	raised 🗘	spent 🗦	cash_on_hand $$	last_report 🔅	race ‡
1	G K Butterfield (D) • Incumbent	714219	797700	560416	2018-10-17	North Carolina District 01
2	Roger Allison (R)	28314	27817	497	2018-10-17	North Carolina District 01

S rstd.ío/teach-ds-jsm19

Lesson: "Just enough" string parsing and regular expressions to go from

Ex 2: What other information do we need represented as variables in the data to obtain the desired facets?

Source: OpenSecrets.org

Political contributions for 2018 NC Congressional Races

61

ecosystem

% rstd.ío/teach-ds-jsm19

inference

63

Estimate the difference between the average evaluation score of male and female faculty.

	score	rank	ethnicity	gender	bty_avg
	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>
1	4.7	tenure track	minority	female	5
2	4.1	tenure track	minority	female	5
3	3.9	tenure track	minority	female	5
4	4.8	tenure track	minority	female	5
5	4.6	tenured	not minority	male	3
6	4.3	tenured	not minority	male	3
7	2.8	tenured	not minority	male	3
8	4.1	tenured	not minority	male	3.33
9	3.4	tenured	not minority	male	3.33
10	4.5	tenured	not minority	female	3.17
•••	•••	•••	•••	•••	•••
463	4.1	tenure track	minority	female	5.33

Hamermesh, Parker. "Beauty in the classroom: instructors pulchritude and putative pedagogical productivity", Econ of Ed Review, Vol 24-4.

64

t.test(evals\$score ~ evals\$gender)

Welch Two Sample t-test

data: evals\$score by evals\$gender # t = -2.7507, df = 398.7, p-value = 0.006218 # alternative hypothesis: true difference in # means is not equal to 0 # 95 percent confidence interval: # -0.24264375 -0.04037194 # sample estimates: # mean in group female mean in group male 4.234328 4.092821

S rstd.ío/teach-ds-jsm19

library(tidyverse) library(infer)

evals %>%

specify(score ~ gender) %>% generate(reps = 15000,type = "bootstrap") %>%

calculate(stat = "diff in means", order = c("male", "female")) %>%

summarise(

l = quantile(stat, 0.025),u = quantile(stat, 0.975)

U # 0.0410 0.243

infer

Now part of the tidymodels suite of modeling packages.

The objective of this package is to perform statistical inference using an expressive statistical grammar that coheres with the tidyverse design framework.

66

evals %>%

start with data

67

evals %>% specify(score ~ gender)

68

evals %>% specify(score ~ gender) %>% generate(reps = 15000, type = "bootstrap")

generate bootstrap samples

69

evals %>%

specify(score ~ gender) %>%
generate(reps = 15000, type = "bootstrap") %>%
calculate(stat = "diff in means", order = c("male", "female"))

calculate sample statistics

evals %>%

specify(score ~ gender) %>%
generate(reps = 15000, type = "bootstrap") %>%
calculate(stat = "diff in means", order = c("male", "female")) %>%
summarise(l = quantile(stat, 0.025), u = quantile(stat, 0.975))

summarise CI bounds

71

evals %>%

specify(score ~ gender) %>% generate(reps = 15000, type = "bootstrap") %>%

calculate(stat = "diff in means", order = c("male", "female")) %>% summarise(l = quantile(stat, 0.025), u = quantile(stat, 0.975))

72
> Your turn!

- How much do you think a typical one bedroom apartment in Manhattan rents for?
- In RStudio Cloud, start the assignment called **02 Manhattan rents**.
 - If you haven't yet joined the RStudio Cloud workspace, go to rstd.io/teach-ds-cloud.
- Open the R Markdown document called manhattan-rents.Rmd, knit the document, inspect the result of each code chunk and discuss it with your neighbor.
- Then, complete the task to calculate a 90% confidence interval for the mean.

73

S rstd.ío/teach-ds-jsm19

leverage the ecosystem

Srstd.ío/teach-ds-jsm19

Fine, I'm intrigued, but I need to see the big picture

Topics :: Data Science in a Box X

datasciencebox.org С

+

Q Search...

 \rightarrow

←

Hello #dsbox

Overview

Philosophy

Topics

Tech stack

Community

Course content

Infrastructure

Pedagogy

rstd.ío/teach-ds-jsm19

⊞

Topics

The course content is organized in three units:

Unit 1 - Exploring data: This unit focuses on data visualiation and data wranling. Specifically we cover fundamentals of data and data visualization, confounding variables, and Simpson's paradox as well as the concept of tidy data, data import, data cleaning, and data curation. We end the unit with web scraping and introduce the idea of iteration in preparation for the next unit. Also in this unit students are introduced to the toolkit: R, RStudio, R Markdown, Git, GitHub, etc.

Unit 2 - Making rigorous conclusions: In this part we introduce modeling and statistical inference for making data based conclusions. We discuss building, interpreting, and selecting models, visualizing interaction effects, and prediction and model validity. Statistical inference is introduced from a simulation based perspective, and the Central Limit Theorem is discussed very briefly to lay the foundation for future coursework in statistics.

Unit 3 - Looking forward: In the last unit we present a series of modules such as interactive reporting and visualization with Shiny, text analysis, and Bayesian inference. These are independent modules that instructors can choose to include in their introductory data science curriculum depending on how much time they have left in the semester.

> Your turn!

Think - pair - share: What are your first reactions to the of it seem natural to adopt and what aspects not so much?

S rstd.ío/teach-ds-jsm19

curriculum design principles you have heard so far? What aspects

Let them eat cake (first)!*

% rstd.io/teach-ds-jsm19

* You can tell them all about the íngredients later!

