
Understanding reactivity
Mine Çetinkaya-Rundel

mine-cetinkaya-rundel
@minebocek

cetinkaya.mine@gmail.com

mailto:mine@stat.duke.edu

Reactivity 101

Reactions

The input$ list stores the current value of each input object under its name.

Set alpha level
sliderInput(inputId = "alpha",
 label = "Alpha:",
 min = 0, max = 1,
 value = 0.5)

input$alpha

input$alpha = 0.2

input$alpha = 0.5

input$alpha = 0.8

Reactivity 101
Reactivity automatically occurs when an input value

is used to render an output object

Define server function required to create the scatterplot
server <- function(input, output) {

Create the scatterplot object the plotOutput function is expecting
 output$scatterplot <- renderPlot(
 ggplot(data = movies, aes_string(x = input$x, y = input$y,

 color = input$z)) +
geom_point(alpha = input$alpha)

)
}

DEMO

- Start with movies-apps/movies-07.R

- Add a new sliderInput defining the size of
points (ranging from 0 to 5)

- Use this variable in the geom_ of the ggplot
function as the size argument

- Run the app to ensure that point sizes react
when you move the slider

SOLUTION
movies-apps/movies-08.R

Solution to the previous exercise

Reactive flow

DEMO

Suppose you want the option to plot only
certain types of movies as well as report how
many such movies are plotted:

1. Add a UI element for the user to select which
type(s) of movies they want to plot

2. Filter for chosen title type and save as a new
(reactive) expression

3. Use new data frame (which is reactive) for
plotting

4. Use new data frame (which is reactive) also
for reporting number of observations

Select which types of movies to plot
checkboxGroupInput(inputId = "selected_type",
 label = "Select movie type(s):",
 choices = c("Documentary", "Feature Film", "TV Movie"),
 selected = "Feature Film")

1. Add a UI element for the user to select which
type(s) of movies they want to plot

Before app
library(tidyverse)

Server
Create a subset of data filtering for chosen title types
movies_subset <- reactive({
 req(input$selected_type)
 filter(movies, title_type %in% input$selected_type)
})

2. Filter for chosen title type and save the new data
frame as a reactive expression

Creates a cached expression
that knows it is out of date

when input changes

3. Use new data frame (which is reactive) for plotting

Create the scatterplot object the plotOutput function is expecting
output$scatterplot <- renderPlot({
 ggplot(data = movies_subset(), aes_string(x = input$x, y = input$y,
 color = input$z)) +
 geom_point(…) +
 …
})

Cached - only re-run
when inputs change

4. Use new data frame (which is reactive) also for
printing number of observations

UI
mainPanel(
 …
 # Print number of obs plotted
 uiOutput(outputId = "n"),
 …
)
Server
output$n <- renderUI({
 movies_subset() %>%
 count(title_type) %>%
 mutate(description = glue("There are {n} {title_type} movies in this dataset.
"))
%>%
 pull(description) %>%
 HTML()
})

DEMO

Putting it altogether

movies-apps/movies-09.R

Also notice
- HTML tags for visual separation
- req()
- Using movies_subset() in the datatable shown

When to use reactives
- By using a reactive expression for the subsetted data frame, we were able to get

away with subsetting once and then using the result twice

- In general, reactive conductors let you

- not repeat yourself (i.e. avoid copy-and-paste code) which is a maintenance boon)

- decompose large, complex (code-wise, not necessarily CPU-wise) calculations into
smaller pieces to make them more understandable

- These benefits are similar to what happens when you decompose a large complex R
script into a series of small functions that build on each other

?
Type your answer

in the chat

Suppose we want to plot only a random sample of
movies, of size determined by the user. What is
wrong with the following?

Server
Create a new data frame that is a sample of n_samp
observations from movies
movies_sample <- sample_n(movies_subset(), input$n_samp)

Plot the sampled movies
output$scatterplot <- renderPlot({
 ggplot(data = movies_sample,
 aes_string(x = input$x, y = input$y, color = input$z)) +
 geom_point(…)
})

SOLUTION

Server
Create a new data frame that is a sample of n_samp
observations from movies
movies_sample <- reactive({
 req(input$n_samp) # ensure availability of value
 sample_n(movies_subset(), input$n_samp)
})

Plot the sampled movies
output$scatterplot <- renderPlot({
 ggplot(data = movies_sample(),
 aes_string(x = input$x,
 y = input$y,
 color = input$z)) +
 geom_point(…)
})

Solution can also be found in movies_10.R.
Note that output$n and output$datatable are also updated in the script.

YOUR TURN

- Suppose we want the user to provide a title for the plot.

- Investigate and debug movies_11.R to add this functionality.

- See lines 68-70 and 136

- Stretch goal: Indicate sample size in title

SOLUTION
movies-apps/movies-12.R

Solution to the previous exercise

Render functions

Render functions

- Provide a code chunk that describes how an output should be populated

- The output will update in response to changes in any reactive values or reactive
expressions that are used in the code chunk

render*({ [code_chunk] })

Recap

- These functions make objects to display

- Results should always be saved to output$

- They make an observer object that has a block of code associated with it

- The object will rerun the entire code block to update itself whenever it is
invalidated

render*({ [code_chunk] })

?
Type your answer

in the chat
Type your answer

in the chat

- Run the app in movies-apps/movies_12.R.

- Try entering a few different plot titles and observe that
the plot title updates however the sampled data that is
being plotted does not.

- Given that the renderPlot() function reruns each
time input$plot_title changes, why does the
sample stay the same?

SOLUTION

Because the data frame that is
used in the plot is defined as a
reactive expression with a code
chunk that does not depend
on input$plot_title.

Implementation

Implementation of reactives
- Reactive values – reactiveValues():

- e.g. input: which looks like a list, and contains many individual reactive values that are set by
input from the web browser

- Reactive expressions – reactive(): they depend on reactive values and observers depend on
them

- Can access reactive values or other reactive expressions, and they return a value

- Useful for caching the results of any procedure that happens in response to user input

- e.g. reactive data frame subsets we created earlier

- Observers – observe(): they depend on reactive expressions, but nothing else depends on them

- Can access reactive sources and reactive expressions, but they don’t return a value; they are used
for their side effects

- e.g. output object is a reactive observer, which also looks like a list, and contains many individual
reactive observers that are created by using reactive values and expressions in reactive functions

Reactive expressions vs. observers
- Similarities: Both store expressions that can be executed

- Differences:

- Reactive expressions return values, but observers don’t

- Observers (and endpoints in general) eagerly respond to reactives, but
reactive expressions (and conductors in general) do not

- Reactive expressions must not have side effects, while observers are only
useful for their side effects

Stop-trigger-delay

Stop with isolate()
- Wrap an expression with isolate() to suppress its reactivity

- This will stop the currently executing reactive expression/observer/output from
being notified when the isolated expression changes

DEMOmovies-apps/movies-13.R

Update the alpha level
only when
other inputs of the plot change

Delay with eventReactive()
- Calculate a value only in response to a given event with eventReactive()

- Two main arguments (the event to react to and the value to calculate in response
to this event):

eventReactive(eventExpr, valueExpr, …)

the expression that produces the
return value when eventExpr

is invalidated

simple reactive value - input$click,
call to reactive expression - df(),
or complex expression inside {}

DEMO
movies-apps/movies-14.R

Simplify the app a bit and
randomly sample a
user defined number of movies,
but only sample and update outputs
when an action button is clicked.

?
Type your answer

in the chat
Type your answer

in the chat

- Run the app in movies-apps/movies_14.R.

- Update it so that a sample with a default
sample size is taken and plotted upon launch.

- Hint: See help for eventReactive()

SOLUTION
movies-apps/movies-15.R

Solution to the previous exercise

Trigger with observeEvent()
- Trigger a reaction (as opposed to calculate/recalculate a value) with

observeEvent()

- Also two main arguments:

observeEvent(eventExpr, handlerExpr, …)

expression to call whenever
eventExpr is invalidated

simple reactive value - input$click,
call to reactive expression - df(),
or complex expression inside {}

DEMOmovies-apps/movies-16.R

Add a button to write out the current
random sample as a CSV file

Stop-delay-trigger
- isolate() is used to stop a reaction

- eventReactive() is used to create a calculated value that only updates in
response to an event

- observeEvent() is used to perform an action in response to an event

YOUR TURN

Debug the following app scripts:

-review/01-mult-3.R - doesn’t work as expected

-review/02-add-2.R - broken!

-review/03-calculate.R - broken!

