Understanding reactivity

Mine Cetinkaya-Rundel

@minebocek W
mine-cetinkaya-rundel)
cetinkaya.mine@gmail.com %

mailto:mine@stat.duke.edu

Reactivity 101

Reactions

The input$ list stores the current value of each input object under its name.

0.

Alpha:
0 0.2 1
p—g inputSalpha =
Set alpha level B SR P ’
sliderInput(inputld = "alpha',
lLabel = "Alpha:'", Alpha:
min = 0, max = 1, i %% 1 inputsalpha = 0.
Va-l.ue — 605) 0 0;1 0;2 0;3 0;4 05 0;6 O.-7 Cl;8 09 1
Alpha:
0 m 1

0.

input$alphs e — inputsalpha

0 01 02 03 04 05 06 0./ 08 09 1

Reactivity 101

Reactivity automatically occurs when an input value
is used to render an output object

Define server function required to create the scatterplot
server <- function(input, output) {
Create the scatterplot object the plotOutput function is expecting

output$Sscatterplot <- renderPlot(

goplot(data = movies, aes_string(x = input$x, y = inputsSy,
color = inputSz)) +
geom_point(alpha = dinputS$Salpha)

- Start with movies—-apps/movies-07.R

- Add a new sliderInput defining the size of
points (ranging from 0O to 5)

- Use this variable in the geom_ of the ggplot
function as the size argument

- Run the app to ensure that point sizes react
when you move the slider

Om 005

Solution to the previous exercise

movies—apps/movies-08.R /

SOLUTION

Reactive flow

Suppose you want the option to plot only
certain types of movies as well as report how
many such movies are plotted:

1. Add a Ul element for the user to select which
type(s) of movies they want to plot

2. Filter for chosen title type and save as a new
(reactive) expression

3. Use new data frame (which is reactive) tor DEMO
plotting

4. Use new data frame (which is reactive) also
for reporting number of observations

1. Add a Ul element for the user to select which
type(s) of movies they want to plot

Select which types of movies to plot

checkboxGroupInput(inputld = "selected_type",
label = "Select movie type(s):",
choices = c("Documentary", "Feature Film", "TV Movie"),
selected = "Feature Film")

2. Filter for chosen title type and save the new data
frame as a reactive expression

Before app
library(tidyverse)

Server .
Create a subset of data filtering_fems#€hosen titl Creates a cached expression

movies_subset <- reactive({ that knows it is out of date
reg(input$selected_type) when input changes

filter(movies, title_type %in% input$selected_typ_,
§)

3.

Use new data frame (which is reactive) for plotting

fiinction 1< exnectingo

Create the scatterplot object the plotOutput
outputSscatterplot <- renderPlot({
gogplot(data = movies_subset(), aes_string(x =

col

Cached - only re-run
when inputs change

geom_point(..) +

1)

4. Use new data frame (which is reactive) also for
orinting number of observations

mainPanel(

uiOutput(outputld = "n"),
)
output$n <- renderUI({
%>%
count(title_type) %>%
mutate(description = glue("There are {n} {title_type} movies 1in this dataset.
"))
%>%

pull(description) %>%
HTML(O)

Putting it altogether

movies—apps/movies-09.R

Also notice

- HTML tags for visual separation DEMO

—req()
- Using movies_subset () in the datatable shown

When to use reactives

- By using a reactive expression for the subsetted data frame, we were able to get
away with subsetting once and then using the result twice

- In general, reactive conductors let you
- not repeat yourselt (i.e. avoid copy-and-paste code) which is a maintenance boon)

- decompose large, complex (code-wise, not necessarily CPU-wise) calculations into
smaller pieces to make them more understandable

- These benetits are similar to what happens when you decompose a large complex R
script into a series of small functions that build on each other

Suppose we want to plot only a random sample of

movies, of size determined by the user. What is Type your answer
in the chat

wrong with the following?

Server
Create a new data frame that i1s a sample of n_samp

observations from movies
movies_sample <- sample_n(movies_subset(), inputSn_samp)

Plot the sampled movies
output$Sscatterplot <- renderPlot({ .
ggplot(data = movies_sample,
aes_string(x = inputSx, y = inputSy, color = input$Sz)) +
geom_point(..)

1)

Server
Create a new data frame that i1s a sample of n_samp
observations from movies
movies_sample <- reactive(]
reqg(inputSn_samp) # ensure availability of value
sample_n(movies_subset (), inputSn_samp)

1)

Plot the sampled movies
outputSscatterplot <- renderPlot({
gogplot(data = movies_sample(),

aes_string(x = input$x, SO LUTION
y = inputsSy,
color = inputS$Sz)) +
geom_point(..)

)

Solution can also be tfound in movies 10.R.
Note that outputsSn and outputSdatatable are also updated in the script.

— YOUR TURN

- Suppose we want the user to provide a title for the plot.

- Investigate and debug movies_11.R to add this functionality.
- See lines 68-70 and 136

- Stretch goal: Indicate sample size in title

Om 005

Solution to the previous exercise

movies—apps/movies—-12.R /

SOLUTION

Render functions

Render functions

renderx({ [code_chunk] })

- Provide a code chunk that describes how an output should be populatea

- The output will update in response to changes in any reactive values or reactive
expressions that are used in the code chunk

DT::renderDataTable(expr. m dataTableOutput(outputld,icon,..))
options, callback, escape,

env, quoted)

renderlmage(expr, env, quoted, deleteFile) |ma eOutput(outputld, width, height, click,
blclick, hover, hoverDelay, hoverDelayType

brush cllckld hoverld inline)

— renderPlot(expr, width, height, res, ...,env, PlotOutput(outputld, width, height, click,
quoted, func) dblclick, hover, hoverDelay, hoverDelayType,
brush, clickld, hoverld, inline)

o~ renderPrint(expr, env, quoted, func, verbatimTextOutput(outputid)
R width)

L w—

=========| renderTable(expr,..., env, quoted, func) tableOutput(outputld)

foo renderText(expr, env, quoted, func) textOutput(outputld, container, inline)

- . renderUl(expr, env, quoted, func) uiOutput(outputld, inline, container, ..)
== htmlOutput(outputld, inline, container, ...)

Recap

renderx({ [code_chunk] })

- These functions make objects to display
- Results should always be saved to output$
- They make an observer object that has a block of code associated with it

- The object will rerun the entire code block to update itself whenever it is
invalidated

Type your answer
in the chat

- Run the app in movies-apps/movies_12.R.

- Try entering a few different plot titles and observe that
the plot title updates however the sampled data that is
being plotted does not.

- Given that the renderPlot () function reruns each
time inputSplot_title changes, why does the
sample stay the same?

Because the data frame that is
used in the plot is defined as a
reactive expression with a code

chunk that does not depend
on inputSplot_title. SOLUTION

Implementation

Implementation of reactives

- Reactive values — reactiveValues():

- e.g. input: which looks like a list, and contains many individual reactive values that are set by

input from the web browser

- Reactive expressions — reactive(): they depend on reactive values and observers depend on

them

- Can access reactive values or other reactive expressions, and they return a value

- Usetul tfor caching the results of any procedure that happens in response to user input

- e.qg. reactive data frame subsets we created earlier

- Observers — observe(): they depend on reactive expressions, but nothing else depends on them

- Can access reactive sources and reactive expressions, but they don't return a value; they are used

for their side effects

- e.g. output object is a reactive observer, which also loo
reactive observers that are created by using reactive va

<s like a list, and contains many individual

ues and expressions in reactive functions

Reactive expressions vs. observers

- Similarities: Both store expressions that can be executed

- Differences:

- Reactive expressions return values, but observers don't

- Observers (and endpoints in general) eagerly respond to reactives, but
reactive expressions (and conductors in general) do not

- Reactive expressions must not have side effects, while observers are only
usetul for their side effects

Stop-trigger-delay

Stop with 1solate ()

- Wrap an expression with isolate () to suppress its reactivity

- This will stop the currently executing reactive expression/observer/output from
being notitied when the isolated expression changes

Update the alpha level
only when

other inputs of the plot change

DEMO

movies—-apps/movies—-13.R

Delay with eventReactive ()

- Calculate a value only in response to a given event with eventReactive()

- Two main arguments (the event to react to and the value to calculate in response
to this event):

eventReactive(eventExpr, valueExpr, ..)

simple reactive value - tnput$click
call to reactive expression - df (),

the expression that produces the
return value when eventExpr
s Invalidated

or complex expression inside { }

Simplify the app a bit and

randomly sample a

user detined number of movies,

but only sample and update outputs
when an action button is clicked. DEMO

movies—apps/movies—-14.R

Type your answer
in the chat

- Run the app in movies—-apps/movies_14.R.

- Update it so that a sample with a default
sample size is taken and plotted upon launch.

- Hint: See help for eventReactive() .

Solution to the previous exerc:ise/

movies—apps/movies—-15.R

SOLUTION

Trigger with observeEvent ()

- Trigger a reaction (as opposed to calculate/recalculate a value) with

observeEvent()

- Also two main arguments:

observekEvent(eventExpr, handlerExpr, ..)

simple reactive value - thput$click,
call to reactive expression - df (),
or complex expression inside { }

expression to call wheneve
eventEXpr is invalidatec

Add a button to write out the current

random sample as a CSV ftile

movies—apps/movies—-16.R DEMO

Stop-delay-trigger

- isolate() is used to stop a reaction

- eventReactive() is used to create a calculated value that only updates in
response to an event

- observeEvent () is used to perform an action in response to an event

— YOUR TURN

Debug the following app scripts:

—review/01-mult-3.R - doesn’t work as expectea

—review/02-add-2.R - broken!

—review/03-calculate.R - broken!

10m 00s

